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Summary

Over the past year a special eye-movement monitoring and visual
display system designed to further research on human visual information
processing has been partially constructed and is nearing completion.

The system can accurately measure eye-movements of less than 1' of arc

and with the same precision control the movement of computer-generated
visual targets relative to an observer's retina. A section of this

report describes the nine subsystems of the visual apparatus and

indicates their potential for experimentation. The theoretical recon-
struction of the response profile to a visual target is complicated

by the fact that under ordinary viewing conditions even during fixation
the population of active elements in the visual pathway changes constantly.
Using the special visual apparatus, it is possible to maintain a target

on a fixed set of retinal receptors facilitating an orderly experimental
analysis of visual response patterns. To direct this analysis toward
predictive models, theoretical work has been focused on control sites

for specific visual functions. At present models of visual transduction
in human rods and cones have been devised and several properties numerically
evaluated by computer, including temporal modulation transfer functions.
Work is currently in progress on a model of visual acuity based upon the

spatial modulation transfer function of neurons in the primary visual cortex.
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148 Introduction

The human visual system is an action-oriented, information-sensing
system whose active elements, although grouped into redundant subunits,
consist for the most part of several billion interconnecting neurons.

The problem of understanding a system of such staggering complexity has
been ameliorated by recent scientific advances in the fields of neuro-
biology and psychophysics and by new technological developments in com-
putation. With present neurobiological techniques it is now possible

to determine in precise detail the neural mechanisms subserving perceptual

processes and contingent behavioral action (Kandel, 1976). Typically,

neurobiological experiments are carried out in non-human animals, but
within reasonable limitations the results are applicable to man. In
psychophysics, sophisticated methods of linear and quasi-linear analysis
have been applied with conspicuous success to detection models for

temporal and spatial parameters of visual targets (Kelly, 1972; Robson,

1966; Blakemore and Campbell, 1969). The availability of high-speed
computers makes possible the implementation of mathematical models of

visual processes too complex for standard analytic solutions. The

project takes advantage of all three of these advances.

The approach is to generate mathematical models of visual processes
consistent with neurophysiological results, than use psychophysical
experiments to estimate parameters and validate the models. Previous
quantitative models of human visual processes have been either simple
summaries of empirical data of narrow scope with limited predictive value,

or theoretical schemas neither in computable form nor realizable in terms
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% of known or plausible neurophysiological mechanisms (see Bibliography).
The novelty of our experimental procedure is to determine the performance
characteristics of human vision under conditions of image stabilization.
Under conditions of ordinary viewing, even during fixation of a stationary
target, the retinal stimulus is never constant due to eye-movements.

By initially removing the effects of eye-movements the problem of analyz- h
ing and synthesizing the response patterns in the visual pathway is

considerably simplified. The system for image stabilization is described

in the next section.




ITI. Equipment

Eyetracker and Image Stabilization System

In order to deconvolve experimentally the contributions of eye-
movements from visual processing, we have designed and constructed
in part a special optical system. By accurately measuring an
observer's eye-movements over a target field, then optically com-
pensating for these movements, the apparatus can effectively
stabilize any target on the observer's retina. By the same feedback
arrangement, it is possible to superimpose any arbitrary motion of
a visual target relative to the observer's retina.

More specifically, the special optical system consists of
subsystems as follows:

1. Eye-Movement Monitor: A modified version of the Stanford

Research Institute Dual Purkinje Eyetracker (Cornsweet
and Crane, 1973; Clark, 1975) measures monocular eye
position to an accuracy of 1' of arc with a bandwidth of
150 Hz.

Z Optical Deflector: A custom-designed, high-speed dual

optical scanner moves an image plane about the center of
rotation of an observer's eye with a repeatability of 1'
arc. When appropriately linked to the eye-movement monitor,
the total lag time in following eye-movements is at most
1.5 msec, effectively stabilizing the visual target relative

to the observer's retina.
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Image Stabilization Monitor: From the difference in

output signals between the eye-movement monitor and the
optical deflector, a custom-modified video generator
superimposes a marker indicating the observer'‘'s point of
regard on a video camera image of the target field.

Focus Stimulator: A specially-designed lens produces

changes in optical focus without changing target size or
brightness so that the system has the capability of
moving targets in three dimensions.

Visual Display: Visual targets can be presented by means

of three display devices: a CRT, a Maxwellian view
stimulator, and a Video monitor.

(a) The CRT display can present two multiplexed
channels of luminous bars or sinusoidally-
varying luminance gratings whose extent,
position, and contrast can be changed at rates
up to 1000 Hz.

(b) The Maxwellian optical system can provide up
to three channels of controlled target or back-
ground illumination of varied spectral composition
over a wide range of intensities up to 107 for
white light.

(c) The Video display can present patterns of 512 by

512 elements with a 6-bit gray scale.




Data Acquisition and Control Interface: For each of the

above devices, computer-control and data sampling are
available in flexible form through an interconnection
panel. The interface contains 16 TTL input lines, 16 TTL
output lines, 16 multiplexed 12-bit A/D input lines, 8
12-bit D/A output lines, and a DMA channel for the video
generator.

Laboratory Computer: An Eclipse S/200 with 32 K words

and 10 Mbyte disc is available to generate visual
displays, control experiments, collect and analyze

experimental data.
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Figure 1. Theoretical impulse response functions

for a human rod photoreceptor. For each energy level,
given in relative units, the time-course of membrane
hyperpolarization has been calculated from a mathematical
model of visual transduction. With increasing pulse

energy, rise-time decreases and peak amplitude saturates.
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III. Models

The first year of the project has been devoted mainly to the
generation of computer software and the construction of apparatus;
however, some preliminary models have been devised for later experi-
mental testing. Our strategy has been to focus attention on critical
control points in visual processing. For example, extensive neuro-
physiological evidence supports the view that the only essential non-
linearity associated with intensity coding in vision and many other
senses is confined to the periphery (Mountcastle, 1967; Stevens, 1970).
Modelling the nonlinear transformation in the periphery sets the stage
for the application of linear models for central processing.

1. Visual Transduction (with J. Daugman)

Electrical recordings from vertebrate retinas over the past decade
have thoroughly discredited the photocell theory of visual trans-
duction. It is now clear that vertebrate photoreceptors are
active elements with complex response properties that to a con-
siderable extent quantitatively account for the temporal and
intensive discrimination capacity of the intact visual system
(e.g., Boynton and Whitten, 1970; Kelly, Boynton, and Baron, 1976).
Individual primate rod and cone photoreceptors have not been
recorded for the prolonged periods necessary to obtain extensive
quantitative results, but the initial findings suggest a close
qualitative similarity to other vertebrate photoreceptors
(DeMonasterio and Gouras, personal communication). So, in devising

mathematical models for human rod and cone photoreceptors we have
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been guided by the work of others on photoreceptors in non-mammalian

vertebrates (Baylor, Hodgkin, and Lamb, 1974; Cervetto, Pisano, and

% Torres, 1977), taking into account the particular dimensions of
human photoreceptors and the higher operating temperature (37.5° ¢).
Figure 1 shows the calculated response for a human rod photo-
receptor to a series of light impulses of varying energy content.
Two types of nonlinearity are evident in the response. First, a
saturating nonlinearity for, as the energy is increased in equal
teps, the peak amplitude increases linearly at low levels,
but approaches an asymptotic value at high levels. To a first

approximation, the amplitude of the peak, V, can be described as

a function of flash energy, E, by the following equation:

= €8

where Vmax is the maximum attainable response, and S1 is a semi-
saturation constant. Equation (1) has been found to describe the
amplitude of response to brief flashes in several species of verte-
brates (Mansfield, 1976). The second type of nonlinearity found

is a time-scale nonlinearity. As the energy increases, the rise-time
remains constant at low levels, then decreases to an asymptotic

value at high levels. To a first approximation, the rise-time of

the peak, t, can be described as a function of flash energy, E, by

the following equation:
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Figure 2. Theoretical transfer functions for a human

foveal cone. Amplitude sensitivity for three back-
ground levels of quantum flux is plotted as a function
of temporal frequency of modulation based upon calcu-
lations from a model of visual transduction. Rather
than being of constant shape as in a linear system,

the shape of the transfer function is level-dependent.




14

¢ o 11/3 ]_1 5

tmin 11/3 + s2

where tmin is the minimum attainable rise-time and Sy is a constant.
Equation (2) has been found to describe the latency of response to
brief flashes in a number of vertebrate species (Mansfield, 1973;
Mansfield and Daugman, 1977). Despite these two nonlinearities
found in the response characteristics of the model for human photo-
receptors and *ihose measured electrophysiologically in other verte-
brates, a steady-state condition of constant illumination produces
a linearization of photoreceptor response. Using the resulting
small signal linearity prevailing at each level of light intensity,
transfer functions can be calculated.

Figure 2 shows the amplitude component of transfer functions
calculated for a human foveal cone for three light intensity levels.
For clarity of presentation and for comparison with human psycho-
physical data for flicker thresholds, the functions are plotted
using an ordinate in units of sensitivity (nanovolts/photon/cone-
second). The shape of the family of curves resembles that obtained
by Kelly (1971) for counterphase gratings which eliminate the
familiar low-frequency attenuation by reducing lateral interactions
in the proximal portions of the retina beyond the photoreceptors.
Such a result is encouraging for it suggests that by obtaining the

product of the transfer function for the appropriate portion of

the proximal inhibitory network and the transfer function for the
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appropriate type of photoreceptor, it will be possible to predict
the form of the human detection threshold curve for a wide variety
of spatio-temporal patterns.
Visual Acuity (with S. Ronner and G. Legge)
The threshold contrast for detecting a visual target with a particular
spatial configuration is influenced by a number of factors, but under
conditions where the nonlinear transformations in the retina can be
set aside so that the response of the visual system can be considered
linear, the cortical mosaic of neurons with spatially complex
receptive fields functions as a major control site. At the level
of the receptive field structure of striate cortical neurons, the
spatial inhomogeneity and anisotropy of primate vision become clearly
evident (Hubel and Wiesel, 1974; Mansfield, 1974). Fortunately,
the inhomogeneity and anisotropy are orderly in nature. The average
size of receptive fields is small in the foveal projection region
of primary visual cortex, but increases approximately as the distance
from the fovea. In addition, receptive fields preferentially
sensitive to horizontal and vertical targets predominate in the
foveal projection region, but not in the periphery. Were it not
for the inhomogeneity and anisotropy a predictive model could be
constructed from a single linear spatial filter using the Fourier
transform of the unique point spread function.

As an instance of the detection problem we have considered
the case of oriented line segments. To construct an appropriate

spatial filter that is consistent with neurophysiological data,
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Figure 3. Orientation selectivity in primate vision.
The solid squares represent the threshold elevation

in human observers following adaptation to a high
contrast sine wave grating. The open circles repre-
sent the integrated impulse discharge elicited by a
luminous narrow bar in a monkey visual neuron recorded
in the foveal projection region of Area 17. The solid
line fitted to the neural data represents the orienta-
tion response profile calculated for a theoretical

spatial filter.




T ™ - e e

17

subunits, each of which has an identical spatial impulse response

function of the form

r2 —r2/25

F(r) = e - 0.04 e (3)

are combined in arrays and their outputs summed linearly. The
response profile of such subunits resembles that found for sustained
on-center off-surround mammalian visual neurons at the level of the
retinal ganglion cells or lateral geniculate. For example, in the
cat lateral geniculate the radius of the surround area is typically
five times larger than the radius of the center area (Enroth-Cugell
and Robson, 1966). When a line segment function is convoluted with
the spatial filter at different relative orientations, an orientation
response function is obtained such as that shown in Figure 3.

Figure 3 shows an orientation response function based upon nine
subunits and possessing a half-maximal bandwidth of 48°. For
purposes of comparison, two sets of data are shown: orientation
sensitivity measures for a human observer derived psychophysically
for a sine-wave grating target, and orientation response profile
for a monkey visual neuron in the foveal projection region of Area
17. Both sets of data ace in accord and are well fitted by the
theoretical curve generated by the model. Since the bandwidth of
the neuron is close to the mode of the population (Ronner, Legge,
and Mansfield, 1976), the orientation sensitivity of the most
numerous neurons may well be the determinant of threshold for the

psychophysical task. By incorporating distribution parameters for
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the spatial filters constructed from a cluster of subunits, it
should be possible to account for inhomogeneity and anisotropy

across the visual field and devise a more general model for the

detection of visual targets.
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IV. Projections
The understanding of vision in biological systems in terms of

predictive mathematical models is a central problem from the scientific

point of view whose solution is of great practical significance. How

does the human visual system recognize patterns or reconstruct the

visual world? 1Is a Fourier-like decomposition an intrinsic part of the

process (Ginsburg, 1973)? At present our research has taken some initial

steps toward answering these intriguing questions. Dynamic models for

human rod and cone photoreceptors have been generated and the effects

of cortical organization on the threshold detection of stationary,

oriented targets examined. These models will serve as building blocks

in the synthesis of more complex visual processes. The next step is

to evaluate the models in psychophysical experiments and incorporate

into more general models the effects of retinal adaptation and inhibitory

spatial interactions. Such effects need to be studied in the absence

of eye-movements. By stabilizing the images of visual targets on the

observer's retina, it will be possible to obtain precise estimates of

the parameters necessary to evaluate and extent the models.
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